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ABSTRACT

Several Padé methods were used to try to accelerate the convergence of partial wave sums for scatter-

ing amplitudes.
was studied in detail,
cases are presented and discussed.

IMTRODUCTION

Recently, numerical procedures,1'4 based on
the method of eligenfunctions expansions, were
devised to calculate the scattering of an elastic
wave from a flaw. If the shape of the flaw is axi-
ally symmetric, then these procedures are efficient,
accurate and easily implemented. Their implementa-
tion requires only a computer of modest memory;
their coding, standard numerical techniques; and
the execution of the code, small amounts of compu-
tar time, However, if the flaw is generally shaped,
practical corncerns impede their implementation,

The principal impediment is the need to compute

and store more information. In gereral, the com-
puting time and storage requirements are at least
an order of magnitude greater. Simply using a big-
ger, faster computer is generally inadequate; a
computer system with "virtual” memory (or very fast
discs) and more sophisticated coding technigues are
needed. Furthermore, the calculation becomes expen-
stve.

The present investigation souy,'t a method to
permit the use of the eigenfunction expansion tech-
niques for generally-shaped flaws without the need
of bigger, faster computers and more sophisticated
coding techniques and sti11]1 permit an inexpensive
calculation. Simply stated, a method was sought
that would take whatever informatiun the eigen-
function expansion techniques could practically
yield and then extrapolate this information into an
ac-urate scattering result,

In detall, one wants to calculate a scattering
amplitude. The exact scattering amplitude A is a
complex number which in terms of a partial-wave
eigenfunction expansion is

o 4

A(8,¢) = }E: :E:

2=0 m=ag

where the agy are partial wave scattering amplitudes,
Yum are spherical harmonics, and ¢ and ¢ are scat-
tering angles. The eigenfunction expansion tech-
niques give the a,n, and the object of these tech-
niques 1s to compute enough agm so the sequence of
partial sums for A(2,4), 1.e.

Aot ?; pRRMIR (2)

PP PG (M

A specific test problem of longitudinal-to-longitudinal scattering from a spherical void
Results for this test case and the behavior of partial wave amplitudes for general

converges to some required accuracy, €.9.

|AL-AL-'|: <e}AL_.|| (3)
where ¢ is a relative error criterion. The object
of presert investigation 1s to take unconverged
information and mathematically extrapolate it to
approximate A{5,¢) to required accuracy. To do
this, various approximations theories, classified
as Padé Approximants, were studied and used on a
specific test pr-blem. This problem was the calcu-
lation of longitudinal-to-longitudinal scattering

of a plane wave from a spherical cavitg. For this
problem the exact scattering amplitude® has a
simple partial wave expansion,
A{.) = }E: a.P, (cos 2) (4)
e0

where the P (cos @) are Legendre polynomials and
the partial wave amplitudes a; are known in terms
of simple, analytic expressions. The partial sums

L
AL = z a,P,.(cos 2) (5)

were ea?}1y computed to a relative error of
e = 10°'¢,

The initial Padé Approximants studied gefe
ones recently developed in nuclear physics.>™ ‘
They are very successful for accelerating the con-
vergence partial sums (4) for the scattering from
large classes of long and short-ranged p.tentials.
These techtiques are generalizable to two variable
partial wave sums, 1.e. (2).

PADE APPROXIMANTS

The Padé Approximant.l3 The [M/N] Padé Approximant
to a function F(x) 1s

PN () < pytx)rgy(x) (6)

where P,(x) is a polynomial of degree at most M
and Qn(v) is a polynom'al of degree at most N. If
F(x) has the formal power series expansion
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Fix) = ) £t 7
L=y
and PH(x) and L1(x) are

Pulx) = Py + Pyx ¢+ oo 4 pyx (8a)

Qu{x) =1 +gy x + .. 4 quN (8b)
Then the equation

Qy(x}F(x) = Ry(x) = oMW (9)

completely and uniquely determines the M+] coeffi-
cients of P (x) and N coefficient of Qy(x) in terms
of tha first M+N+1 coefficients of the power series
expansion of F(x). Specifically, one carries out
the mplied power series multiplications in (9),
equates terms of 11ke powers of x, and then solves
an M+N+1 set of linear algebraic equations for the
p's and q's ir terms of the f's,

Padés have numerous uses, but their use in
summing series is of immediate interest. In this
use, one takes the first M+N+1 coefficients in a
pertial sum »

M ’
NS ;g% f[x'

computes various sequences of Padés, and examines
their convergence, For cer*ain classes of func-
tions the Padé€s must converge to the correct answer.
Far many other classes of functions for which con-
vergence proofs are absent experience shows that if
the Fadés converge, they converge to the ..rrect
answer.

(10)

It is helpful to be mindful that in the con-
struction of (6) only the coefficients of a partial

som of the infinite series in {7) is used. However,
{({' has the formal power series expansion
RULIRES > fM/N, ()

20

and it is easy to show the first M+N+l coefficients
of this series equal the first M+N+1 coefficients
of (7). The higher nrder coefficients in (11)
approximate the higher order coefficients in (7).
With respect to (7§ these higher order coefficients
were not used to construct (6). This is useful if
the higher order terms are unknown, Sslowly con-
vergent, or too expensive to calculate. The idea
1s to get the Padé to approximate them for us.

Generalfzed Padé Approximants.13 The generalized
Pad€ Approximant (or Baker-Gammel Approximants)
apply to functions G(x) which have the representa-
tion

600) = 2y gk, () (2)
2=0
where
5
ky(x) = %[(%) Keu)| (13)

with the generating function K{x,u) to be specified.
For example, 1f K(xyu) = (1 = 2xu + u?)k

G{x) = Z g.P, (x) (14}
w=0 “ "

where P {x) is the Legendre polynomial. The
[M+J/M] ‘generalized Padé Approximant to G{x) is

J M
LISTL T I kylx) + Za K(xou;) (15)
=0 3 j=1
with the j-summation absent if } = -1, The &j. 1
and uq are to be specified. When the generating ~
function for Legendre polynomials i5 used for

K(x,u), the generalized approximants are called
Legendre-Fadé Approximants.

One way to specify the fi' Ly and uj is with

the g, in (12) to create the orma1 ser1es

Fix) = & g.x
9.=0

F[M+J/M](x).

and then construct It then can be

shown that
(16a)
and

= J41, J+2, ..., 2M+J (16h)

M
g'. = 2 j US‘, ;
=

That is, *the {:, 1; and uj are unknowns in a ncn-
1inear system 8f e uat1ons with the known con-
stants g;. ?re conveniently, it can also be
showE 7“3 and ajy Ju; are the poles and residues
of 7 (x), ind P ge coefficients in the series
expansion of FLM* /ﬂj(x) as x » «, All these
quantities (the poles, residues, etc ) are easily
obtained by simple numerical analysis. The gener-
alized approximant (15) has the property that

MMy o 3 oMM () (17)
2=0

with the first 2M+J+1 terms identical to the first
such terms in (12). Again, the Padé Approximant
has taken the coefficierts in a partial sum and
returned them plus an approximation for the remain-
ing coefficients of the actual infinite sum.

n-Point Padé Approximants. 13 If a function M(x)
has the values Fy, Fa,..., Fp at x7, %2, ..., Xp
then the n-Point [H/N] padé Approx]mant {or the
Lagrange interpolation polynomials) is the ratio
of two polynomials of degree at most M and N

f(MN] () - Py x)/Q(x) (18}
so that

F[M/N](Xi) =F1=1,2, ...,n (19)



(Pu and Qy are defined as in (8).)

of igmediate interest is the 1-Point (or
punctuallV) padé Approximant. This approximation
applies tc the sum

B = IE: b, 27
o -
and its partial sums,
L
B =25, (21)
00 7
Now if one cor iders the formal power series
Fix) = }Z: b, x’ (22)
=0

then o = F(1). IVﬁ 1-Point [M/N] Padé Approximant
L? 5(9), i.e. B["‘l. is constructed by forming
FLM/NL(x) for (21) (i.e. find the p's and q's) and

equating
M i
M/ M/N -
plM/HD IRy :E; by /U1 * :E: q,) (23)
m=G n-1
(M/0] V4

The approximants B are equivalent to Shanks's
formal generalization of Aitken's extrapolation
formula. Tnis approximation is applied to partial
wave sums by defining

(24)

b = a. P;(cos "

RESULTS

To achieve the same deqgree of accuracy, the
various Pade methods used were found to need at
least as many partial wave coefficients as the
partial sumi, The Pade methods investigated afford
no computational advantage over directly summing
the series,

In Fig. « the magnitudes of the partial sum
‘5) are plotted as a function of L. As a reminder,
he test problem is the longitudinal-to-longitudinal
scattering of a plane wave from a spherical cavity;
A(5) is the s attered amplitude; a is the radius of
the sphere; ond k is the incident and scattered
wavenumber. ({For the partial sum A, L+} coeffi-
cients are needed.) Figure 1 shows that for
different values of ka the partial sums behave
similarly. Each sequence rises monotonically to a
plateau. For each ka, there is a particular L
which marks the beginning of the plateau /L=2, 5,
and 10}, For these L'c the partial sum ha: a
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“iq. 1. The convergerce of the forward scattering
differential crcss-section as a function of L.

retative errar ¢ = 1072, For smaller L values the
partial sums arc bad approximations to the exac.
answer; for larger L values the partial sum gon-
verges rapidly. The sums achieve a € = 10-1¢

for L=8, 17 and 25 when ka = 1, 5 and 1C,

The Pad$ methods behave similarly: Conver-
gence starts abruptly and then proceeds rapidly,
This behavior is listed in Tables I, II and III for
ka = 1, 5 and 10. (The [M/N] need M+N+1 coeffi-
cients.) Except for [M-1/M] all sequences [N/M]
for N » M and a given method behave as those listed;

Table T.

1-POINT

M (M-1/M] [(M/M] (M+1/M] (M-1/M]
1 0.3814 0.502i 0.5705 0.3814
2 0.5492 0.5517 0.5333 0.5492
3 0.5536 0.5533 0.5533 0.5536
4 0.5533 0.5533 0.5533

0.5533

The TongitLinal differential cross-section at 8 = 0° 2nd ka = | for three diagonal
sequences of the 1-Point, Legena-e and Asymutotic Legendre Padé Approximants,

* LEGENDRE

N ==

ASYMPTOTIC LEGENDRE

[M/M] (M+1/M] (M-1/M] (M/M] (M+1/M]
0.5c21 0.5705 0.4448 0.5198 0.5570
0.5517 0.5533 0.5560 0.5533 0.5530
9.5533 0.5533 0.5533 0.5533 £.5533
0.5533 0.5533 0.5533 0.5533 0.5533

T———r



Table I1I.

The longitudinal differential cross-section at & = 0° and ka = 5 for three diajonal

sequences of the 1-Point, Legendre and Asymptotic Legendre Padé Approximants.

1-POINT
M [M-1/m] (M/M] [M+1/M] [M-1/M]
1 0.0077 0.1447 0.4000 0.0077
2 0.0283 0.6722 8.7317 0.0104
3 0.6091 2.4488 9.6990 0.1889
4 14,1791 9.6471 9.6179 14,1791
5 9.5925 9.6209 9.6179 9.5925
6 9.6195 9.6179 9.6179 9.6195
7 9.6179 9.6179 9.6179 9.6179

LEGENDRE ASYMPTOTIC LEGENDRE
[M/M] [M+1/M]  [m-1/M] [M/M] [Me1/M]
0.1447 0.3648 0.1850 0.4060 7.43N
0.1084 8.7317 5.8718 9.047¢C 12.5913
1.7738 9.6990 9.8046 9.31€5 3.5915
9.647 9.6179 29,5810 9.6143 9.6179
9.6209 9.6179 9.6178 9.6179 9.6179
9.6179 9.6179 9.6179 9.6179 9.6179
9.6179 9.€173 9.6179 9.6179 9.6173

furthermore, the behavior is essentially indepen-
dent of scattering angle. We note that for ka = 10
tr2 1-Point and Legendre Padé methods need mare
coeff1c1§nts than the partial sum to achieve

€ = 10-1¢,

In all cases the partial sums converge when
L > ka. To try to understand the behavior of these
sums, the behavior of the coefficients a, were

studied. In partigu1ar. their behavior ¥or
§ >> ka was found.> For @ spherical void and
inclusion
a, - 7 = ¢ (ka) P2 (25)
7 - v -
If one lets
dﬁ e ai/c: (26)
then
U
1 [ A
al” 1@, ., (27)
2 B

The left-hand side of the above is plotted in Fig.
2 as a function of 2. From this figure ona sees
that for 2 = B and 17 (for ka = 1 and 5), the
ratio has approached its asymptotic limit.
(Actually the 1imits are sti11 several percent
away.) For ka = 10 the 1imit i< not yet attained.
ForIEhese % values the ¢ for the partial sums ic
1077,

partial wave coefficients needed in a converged
partial sum is quite different than the
asmptotic behavior, The Padé methods might

be ineffective because of this, WhaiL was devised
is a new Padfsmethod. the Asymptotic Legendre-Padé
Approximant,'~ which utilizes the asymptotic
behavior of the partial wave coefficients. The
Padt coefficients are forced to anticipate the
correct asymptotic behavior 2o hopefully the
convergence of predicted partial wave summation
is accelerated.

The Asymptotic Legendre-Padé can be construct-
ed in the following way: For the Legendre series

o

2;% a;P:(cos )

instead of constructing the [M+J/M] Legendre Pad#
from the convergent series

F(x) = 2&_:;

construct it from the divergent series
F(x) = :E: d x'
=0 '

that is with the asymptotic behavior divided ou:.
(d; 1s given by (25) and (26),)

After constructing the [M4J/M]

padé, one has

A(R) =

Figures 1 and 2 and (25) suggest the following: F[M+J/M]( ) = :E: g[MeI/M] (29)
Although the partial wave coefficients eventually x) = & x <o)
fall off very rapidly, this rapid fall-off (or mT
asymptotic behavior) occurs after the rapid con- h
vergence of the partial sum. The behavior of the en,

Table TTT. The TongTtudinal differential cross-section at u = 0° and ka = {0 for three diagonal
sequences of the 1-Point, Leqendre and Asvmptotic Legqendre Padt Approximants. -

1-POINT LEGENDRE ASYMPTOTIC LEGENDRE
M [(M-1/M] [M/M] (M+1/M]  [M-1/M] [M/M] (MaA/M] [M-1/M] (M/M] [M+1/M]
1 0.0003 0.629 0,2877 0.0003 0.0291 0.2877 0.0382 0.2756 0,3434
2 0.0224 0.0942 0.4015 0.0081 0.0210 0.0541 0.3732 0.3488 0.3€37
3 0.0733 0.6031 1.5343 0.0335 0.1820 0.41 J.6576 10,5304 25,9763
) 1.4516 1.3077 2.4237 0.3678 0.4141 0.6907 25.9288 31.8504 53.5930
5 3.5562 4,13865 2.6270 3.9362 1.0873 0.7402 53.1786 41.1073 48.3262
6 0.0879 2.2730 1.7432 0.0385 0.7730 0.4011 49,3442 36.5396 36.0059
7 0.9116 2.3716 76,5076 0.4305 1.2012 76.5076 36.0028 35,8575 35.8543
8 0.1463 24.1183 35,3897 0.0597 24,1183 35.8899 35.8543 35.8518 35.8518
9 48.5999 35.8766 35.8515 48,5999 35.8766 35.8515 35.8518 35.8513 35.8518
10 35.8242 35.8517 35.8518 35.8242 35.8517 35.8518 35.8518 35.8519 35,8518
N 35.8518 35.8518 35.8518 35.8518 35,8518 35.8543 35.8518 35.8518 35.8518
12 35.8518 35.8516 35.8518 35.8518 35.8518 35,.8514 35.8518 35.8518

35,8518

Y e il
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Fig. 2. The convergence of the partial wave ampli-

tudes to their asymptotic value as a function of L.
(See (27, in text.)

LA :E: aFM‘J/M]P;(cns 3 (29)
. =0

where
M+J/k]

aFM+J/M] = dE - cC. (30,

(The analysis car be made more formal by specify-
ing a K(x,u).;

The results of the application of the new
method arc also listed in Tabies I, 1I ind 111,
For ka = 12 (Table III) this n-w method converges
faster than the 1-Point and Legendre-Padés; however,
the convergence is still no faster than the partfal
Suin,

DISCUSSION

Clearly, not all possible summation techniques
were studied nd those studied were applied to a
specific flaw shape. However, the l-Paint and
Legendre-Padé Approximants are "state-of-the-art”
tor nuclear physics scattering problems., The
Asymptotic Legendre-Padé Approximart, developed
for this investigation, will probably advance the
state-of-the-art,

Wny do the techniques work for nuclear
scattering and not for elastic wave scattering?
There 1s an important difference between the
scattering problems studied in nuclear physics
and the problem studied here. For the problem
under discussion the flaw (or scatterer) is
modeled as & finite, homogeneous region of space,
The correspanding scatterer in nuclear physics is
the square-well potential. This 1s a short-
ranged potential; however, the short-ranged
potentials to whick the Padé mctheds are being
successfully applied are families of the Yukawa
potential. For the pure Yukawz potential, the
asymptotic behavior of 1ts partial wave amplitudes

is

2541)!

T (ka)

which does not fall off a? rapidly as (25). For
the squa~e-well potentiall6

2i4]

a a (3])

2 20+

241
ka
a « tT??éTj!!]’lziiﬁj (32)

which is quite similar to (25). The partial sums
for square-well-type potential apparently converges
too fast for the Padé methods tc be advantageous
over the partial sums,

The asymptotic behavior in (25) is apparently
not 1imited to spherical flaws. For gererally-
shaped flaws, the Born approximation provides a
useful estimate of the asyTgtotic behavior of the
partial wave coefficients. One has

A=) = J[ ey el (k-ko)or (33)
flaw
where k and k, are the scattered and incident wave
vectors. Since
iker _ o S o o
e XL - 4.% 2_1 Js (kr)Y__m( o k) il roiy)
pEUmE- (34)
then
Mov) =20 D0 a ¥, () (35)
=0 m=-; "
where
LR f dv j<(kr) = Vj2(kR) (36)
a T )
flaw

with V being the volume of the flaw and R some
characteristic length of the flaw. For ¢=>kR

Hence as . ~ »

am " Iizni?;!!]- (39)

which is very similar to (25). Again the abcve
estimate and (25) is indcpendent of the flaw being
a void or inclusion, One can easily convince ore-
self that the finite volume of the flaw, no* its
homogeneity, is the significant factor for the
rapid fall-off,

Equation (38) implies that the partial wive
expansion, even for generally shaped objecls, is
quite rapidly convergent. However, question 15
not whether tne sum converges, but how many terms
are needed? The goal was to produce an accurate
sum with no more than ten terms.

Just because the Padé techniques afford no
computational advantage when the flaw is spheri.al
does not prove that the techriques will be as
fneffuctive for non=spherical flaws, What 1s



needed is a clearer picture how the partial wave
sums betave for non-spherical flaws. There are
few studies of the convergence pruperties of the
eigenfunction expansion method. There is some
indication that for a spheroidal flaw the partial
sums behave at least differently; furthermore,
different implementations of the eigenfunctgon
expansfon method may converge differently,
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